PCA算法降维代码示例

这段代码将数据进行PCA降维至3维,并绘制一个三维散点图,展示降维后的前3个主成分。

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.colors as mcolors
from mpl_toolkits.mplot3d import Axes3D

# 读取数据
file_path = '4_SmCrTe3_Study_AFM_Select.txt'
data = pd.read_csv(file_path, sep='\t', header=None)

# 命名列
columns = ['ID', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'Energy', 'Unused']
data.columns = columns

# 删除不需要的列
data = data.drop(columns=['ID', 'Unused'])

# 数据概览
print(data.describe())

# 分析Energy列的统计数据
energy_stats = data['Energy'].describe()
print("\nEnergy column statistics:")
print(energy_stats)

# 1. 直方图(1_Energy_Analysis_Histogram.png)
plt.figure(figsize=(12, 6))

# 直方图
plt.subplot(1, 2, 1)
sns.histplot(data['Energy'], kde=True)
plt.title('Energy Distribution')
plt.xlabel('Energy')

# 在直方图中标注count数量
for patch in plt.gca().patches:
    height = patch.get_height()
    plt.annotate(f'{height:.0f}', (patch.get_x() + patch.get_width() / 2, height), ha='center', va='bottom')

# 第二个直方图,用于替代箱线图
plt.subplot(1, 2, 2)
sns.histplot(data['Energy'], bins=30, kde=True)
plt.title('Energy Distribution (Detailed)')
plt.xlabel('Energy')

# 在直方图中标注count数量
for patch in plt.gca().patches:
    height = patch.get_height()
    plt.annotate(f'{height:.0f}', (patch.get_x() + patch.get_width() / 2, height), ha='center', va='bottom')

plt.tight_layout()
plt.show()

# 检查并处理NaN值
print("\nNumber of NaN values in each column:")
print(data.isna().sum())

# 使用插值方法填补NaN值
data = data.interpolate()

# 再次检查NaN值是否已经处理
print("\nNumber of NaN values in each column after interpolation:")
print(data.isna().sum())

# 2. 散点图(2_Energy_Analysis_Scatter.png)
plt.figure(figsize=(12, 6))
sns.scatterplot(data=data, x=data.index, y='Energy', color='dodgerblue')
plt.title('Selected SmCrTe3 Energy Distribution', fontsize=15)
plt.xlabel('Sample Index', fontsize=12)
plt.ylabel('Energy (meV)', fontsize=12)
plt.show()

# 3. 热力图(3_Single_f-Orbital_Couplings_with_Energy_Hot.png)
plt.figure(figsize=(12, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', center=0, linewidths=0.5)
plt.title('Correlation Matrix of f-Orbital Occupations and Energy', fontsize=15)
plt.show()

# 双轨道和能量关系(4_Double_f-Orbital_Couplings_with_Energy_Hot.png)
couplings = pd.DataFrame()
for i in range(1, 8):
    for j in range(i + 1, 8):
        couplings[f'f{i}*f{j}'] = data[f'f{i}'] * data[f'f{j}']
couplings['Energy'] = data['Energy']

# 计算耦合特征与能量的相关性
coupling_correlation = couplings.corr()['Energy'][:-1].values

# 初始化7x7矩阵为0
coupling_correlation_matrix = pd.DataFrame(0, index=[f'f{i}' for i in range(1, 8)],
                                           columns=[f'f{j}' for j in range(1, 8)])

index = 0
for i in range(1, 8):
    for j in range(i + 1, 8):
        correlation_value = coupling_correlation[index]
        coupling_correlation_matrix.loc[f'f{i}', f'f{j}'] = correlation_value
        coupling_correlation_matrix.loc[f'f{j}', f'f{i}'] = correlation_value
        index += 1

# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(coupling_correlation_matrix.astype(float), annot=True, cmap='coolwarm', fmt=".2f", annot_kws={"size": 10})
plt.title('Correlation of f-Orbital Couplings with Energy')
plt.xlabel('f-Orbital')
plt.ylabel('f-Orbital')
plt.show()

# 主成分分析(PCA)
features = ['f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7']
x = data[features]
y = data['Energy']

# 标准化
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)

# PCA降维
pca = PCA(n_components=3)
principal_components = pca.fit_transform(x_scaled)
pca_df = pd.DataFrame(data=principal_components, columns=['PC1', 'PC2', 'PC3'])
pca_df['Energy'] = y.values

# 自定义颜色映射
cmap = mcolors.LinearSegmentedColormap.from_list("custom", ["red", "yellow", "green", "blue"])

# 绘制PCA结果3D散点图
fig = plt.figure(figsize=(16, 10))
ax = fig.add_subplot(111, projection='3d')

# 绘制散点
sc = ax.scatter(pca_df['PC1'], pca_df['PC2'], pca_df['PC3'], c=pca_df['Energy'], cmap=cmap)

# 添加颜色条
cbar = plt.colorbar(sc, ax=ax, pad=0.1)
cbar.set_label('Energy')

# 设置轴标签
ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
ax.set_zlabel('PC3')
ax.set_title('PCA of f-Orbital Occupations (3D)')

plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/775205.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单元测试Spring 上下文加载过程中遇到的阻塞或死锁问题

IDEA单元测试一直转圈,阻塞,前置后置的方法都不执行,无任何输出 1.单元测试类 SpringBootTest(classes {BareMetalApplication.class}) RunWith(SpringRunner.class) public class K8sUserNfsStoreInitServiceImplTest {BeforeEachpublic…

国家力推!国家人工智能产业标准化指南

在科技日新月异的今天,人工智能(AI)作为推动社会进步和产业升级的关键力量,正以前所未有的速度改变着我们的世界。从自动驾驶到智能制造,从智慧医疗到金融科技,人工智能的触角已经深入到了经济社会的各个角…

三万字带你一遍跑通uer

三万字带你一遍跑通uer 参考文档 今天给大家介绍个非常强大的项目uer,集成了许多可以做自然语言的东西,效果的话也非常好,很适合企业级的应用! 1. 先将项目uer从github拉取下来(zip或git都ok) 2. 用pycha…

linux查看当前文件夹的剩余空间

要查看当前文件夹所在的文件系统的剩余空间,并以GB为单位显示,可以使用以下命令: df -BG .其中: B:用于指定块大小(block size)。你可以通过指定后缀来改变输出的单位,如K&#xf…

船舶雷达与导航系统选择7/8防水插座的原因分析

概述 船舶雷达与导航系统在现代航海中扮演着至关重要的角色,它们为船舶提供准确的导航信息,确保航行的安全和效率。在这些系统中,7/8防水插座的使用尤为重要,因为它们能够在恶劣的海上环境中提供稳定的电力和信号连接。接下来&am…

Finding Global Homophily in Graph Neural Networks When Meeting Heterophily

本文发表于:ICML22 推荐指数: #paper/⭐⭐⭐ 问题背景: 异配图的邻接矩阵难以确定,以及异配图的计算复杂度开销大 可行的解决办法:高通滤波多跳邻居,GPRGNN(pagerank一类,各阶邻居的权重不同,ACM-GCN(高低通滤波,H2GCN(应该复杂度很大&…

《梦醒蝶飞:释放Excel函数与公式的力量》8.8 STDEVP函数

8.8 STDEVP函数 STDEVP函数是Excel中用于计算总体数据的标准偏差的函数。标准偏差是统计学中的一个重要指标,用于衡量数据集中各数值偏离平均值的程度。总体标准偏差考虑了整个数据集,而不是样本。 8.8.1 函数简介 STDEVP函数用于返回总体数据的标准偏…

Infinitar链游新发展新机遇

区块链游戏市场在近年来经历了显著增长,吸引了大量的投资和关注。随着加密货币和NFT(非同质化代币)概念的普及,越来越多的投资者、游戏开发者和看到了区块链技术在游戏领域的应用潜力,纷纷涌入市场。区块链游戏的用户量…

LeetCode 算法:二叉树的最近公共祖先 III c++

原题链接🔗:二叉树的最近公共祖先 难度:中等⭐️⭐️ 题目 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点…

Jackson与Json、Json和各种Java数据类型的互相转化

jackson是什么 json是最常用的数据交换格式 Jackson是最流行的Json库 首先对于这种JSON序列化的库其实有非常多,比如我们熟悉的Gson,Fastjson等等,当然技术没有完全的好坏,但是从使用情况和社区生态等方面综合看来,Ja…

uni-app x 跨平台开发框架

目录 uni-app x 是什么 和Flutter对比 uts语言 uvue渲染引擎 组合式API的写法 选项式API写法 页面生命周期 API pages.json全局配置文件 总结 uni-app x 是什么 uni-app x,是下一代 uni-app,是一个跨平台应用开发引擎。 uni-app x 是一个庞…

A4-C四驱高防轮式巡检机器人

在当今数字化和智能化迅速发展的时代,旗晟智能带来了一款革命性的创新产品——A4-C四驱高防轮式巡检机器人。这款机器人以其卓越的性能和多功能性,为工业巡检领域带来了全新的解决方案。 一、产品亮点 1、四驱动力与高防护设计 四驱高防轮式巡检机器人…

el-table封装点击列筛选行数据功能,支持筛选,搜索,排序功能

数据少的话&#xff0c;可以前端实现&#xff0c;如果多的话&#xff0c;建议还是请求接口比较合理父组件&#xff1a; <template> <div class"home"> <!-- <img alt"Vue logo" src"../assets/logo.png"> <HelloWorld …

重塑通信边界,基于ZYNQ7000 FPGA驱动的多频段多协议软件无线电平台

01、产品概述 本平台是基于高性能ZYNQ-7000系列中的XC7Z045处理器构建的多频段多协议软件无线电解决方案&#xff0c;集成了AD9364芯片——一款业界领先的1x1通道RF敏捷收发器&#xff0c;为无线通信应用提供了强大支持。其存储架构包括2路高速4GB DDR3内存、1路32GB EMMC存储以…

springboot dynamic配置多数据源

pom.xml引入jar包 <dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-starter</artifactId><version>3.5.2</version> </dependency> application配置文件配置如下 需要主要必须配置…

ASUS/华硕飞行堡垒8 FX506L FX706L系列 原厂win10系统 工厂文件 带F12 ASUS Recovery恢复

华硕工厂文件恢复系统 &#xff0c;安装结束后带隐藏分区&#xff0c;一键恢复&#xff0c;以及机器所有驱动软件。 系统版本&#xff1a;Windows10 原厂系统下载网址&#xff1a;http://www.bioxt.cn 需准备一个20G以上u盘进行恢复 请注意&#xff1a;仅支持以上型号专用…

【收藏级神丹】Liae384_刘亦菲_直播可用,平衡度最高的原创神丹,独家珍稀资源

Liae384_刘亦菲_DFL神丹&#xff1a;点击下载 此丹较重&#xff0c;小卡可以使用但不能训练&#xff0c;实测复训适合24G卡8G、12G、16G卡下载练好的专丹直接使用即可384的Liae对各类杂论视频兼容比较好&#xff0c;高参也能容忍高分辨率的DST复用方式: 非必要不用删除AB&…

Docker:二、常用命令

&#x1f341;docker常用命令 官方帮助文档&#xff1a;https://docs.docker.com/reference/ &#x1f332;帮助命令&#xff08;版本信息&#xff09; docker -v # 显示docker版本 docker version # 显示docker版本信息 docker info # 显示docker系统信息 docker 命…

人工智能系列-numpy(三)

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” 副本和视图 副本 副本是一个数据的完整的拷贝&#xff0c;如果我们对副本进行修改&#xff0c;它不会影响到原始数据&#xff0c;物理内存不再同一位置。副本一般发生在Pytho…

Java--继承

1.继承的本质是对某一批类的抽象&#xff0c;从而实现对世界更好的建模 2.extends的意思是“扩展”&#xff0c;子类是父亲的扩展 3.Java中只有单继承&#xff0c;没有多继承 4.继承关系的两个类&#xff0c;一个为子类&#xff08;派生类&#xff09;&#xff0c;一个为父类…